
FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       26                       Dr.Venkateswarulu, Assoc Prof 
 

 

Unit 1: 

 

Assignment Topics: 

 

1. Define Internet of things and characteristics of IOT and protocols used in Link Layer 

 
A. Internet of Things (loT) comprises things that have unique identities and are connected to the 

Internet. 

 

The characteristics of IoT 

1. Self-Configuring 

2. Dynamic and Self-Adapting 

3. Interoperable Communication Protocols 

4. Unique Identify 

 
Integrated into information Network 

 

IoT protocols used in Link Layer are 
1.802.3-Ethernet 

2. 802.11-WiFi 
3. 802.16-WiMax 

4. 802.15.4-LR_WPAN 2G/3G/4G 

 
 

2. Various enabling technologies and applications of IOT 

 

A. IoT is enabled by several technologies including Wireless Sensor Networks, Cloud 

Computing, Big Data Analytics, Embedded Systems, Security Protocols and architectures, 

Communication Protocols, Web Services, Mobile internet and semantic search engines. 

 

1) Wireless Sensor Network(WSN): Comprises of distributed devices with sensors which 

are used to monitor the environmental and physical conditions. Zig Bee is one of the most popular 

wireless technologies used by WSNs. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       27                       Dr.Venkateswarulu, Assoc Prof 
 

 

 

 

WSNs used in IoT systems are described as follows: 

 Weather Monitoring System: in which nodes collect temp, humidity and 

other data, which is aggregated and analyzed. 

  Indoor air quality monitoring systems: to collect data on the indoor air quality and 

concentration of various gases. 

 Soil Moisture Monitoring Systems: to monitor soil moisture at various locations. 

 Surveillance Systems: use WSNs for collecting surveillance data(motion data 

detection). 

 Smart Grids : use WSNs for monitoring grids at various points. 

 

2) Cloud Computing: Services are offered to users in different forms. 

 Infrastructure-as-a-service(IaaS):provides users the ability to provision computing 

and storage resources. These resources are provided to the users as a virtual machine 

instances and virtual storage. 

 Platform-as-a-Service(PaaS): provides users the ability to develop and deploy 

application in cloud using the development tools, APIs, software libraries and 

services provided by the cloud service provider. 

 Software-as-a-Service(SaaS): provides the user a complete software application or 

the user interface to the application itself. 

 

3) Big Data Analytics: Some examples of big data generated by IoT are 

 Sensor data generated by IoT systems. 

 Machine sensor data  collected from  sensors established in industrial and energy 

systems. 

 Health and fitness data generated IoT devices. 

 Data generated by IoT systems for location and tracking vehicles. 

 Data generated by retail inventory monitoring systems. 

 

4) Communication Protocols: form the back-bone of IoT systems and enable 

network connectivity and coupling to applications. 

 Allow devices to exchange data over network. 

 Define the exchange formats, data encoding addressing schemes for device and 

routing of packets from source to destination. 

 It includes sequence control, flow control and retransmission of lost packets. 

 

5) Embedded Systems: is a computer system that has computer hardware and software 

embedded to perform specific tasks. Embedded System range from low cost miniaturized 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       28                       Dr.Venkateswarulu, Assoc Prof 
 

devices such as digital watches to devices such as digital cameras, POS terminals, vending 

machines, appliances etc., 

 
3. Communication APIs of IOT 

 

A. IoT Communication APIs: 

a) REST based communication APIs(Request-Response Based Model) 

b) WebSocket based Communication APIs(Exclusive Pair BasedModel) 

a) REST based communication APIs: Representational State Transfer(REST) is a set of 

architectural principles by which we can design web services and web APIs that focus on a 

system’s resources and have resource states are addressed and transferred. 

 

The REST architectural constraints: Fig. shows communication between client server with 

REST APIs. 
 

 

Client-Server: 

The principle behind client-server constraint is the separation of concerns. Separation 
allows client and server to be independently developed and updated. 

Stateless: 

Each request from client to server must contain all the info. Necessary to understand the 

request, and cannot take advantage of any stored context on the server. 

Cache-able: 

Cache constraint requires that the data within a response to a request be implicitly or 

explicitly labeled as cache-able or non-cacheable. If a response is cache-able, then a client 

cache is given the right to reuse that response data for later, equivalent requests. 

Layered System: 

constraints the behavior of components such that each component cannot see beyond the 

immediate layer with which they are interacting. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       29                       Dr.Venkateswarulu, Assoc Prof 
 

 

User Interface: 

constraint requires that the method of communication between a client and a server must 

be uniform. 

Code on Demand: 

Servers can provide executable code or scripts for clients to execute in their context. This 

constraint is the only one that is optional. 

 
Request-Response model used by REST: 

 

RESTful webservice is a collection of resources which are represented by URIs. RESTful 

web API has a base URI(e.g: http://example.com/api/tasks/). The clients and requests to 

these URIs using the methods defined by the HTTP protocol(e.g: GET, PUT, POST or 

DELETE). A RESTful web service can support various internet media types. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       30                       Dr.Venkateswarulu, Assoc Prof 
 

b) WebSocket Based Communication APIs: WebSocket APIs allow bi-directional, full 

duplex communication between clients and servers. WebSocket APIs follow the exclusive 

pair communication model. 
 

 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       31                       Dr.Venkateswarulu, Assoc Prof 
 

4. Physical design of IOT with neat diagram 

 

A. Physical Design Of IoT 

 

1) Things in IoT: 
 

 

The things in IoT refers to IoT devices which have unique identities and perform remote 

sensing, actuating and monitoring capabilities. IoT devices can exchange dat with other 

connected devices applications. It collects data from other devices and process data either 

locally or remotely. 

An IoT device may consist of several interfaces for communication to other devices both 

wired and wireless. These includes 

1. I/O interfaces for sensors, 

2. Interfaces for internet connectivity 
3. memory and storage interfaces 

4. audio/video interfaces. 

 

1) IoT Protocols: 

a) Link Layer : Protocols determine how data is physically sent over the network’s physical 

layer or medium. Local network connect to which host is attached. Hosts on the same link 

exchange data packets over the link layer using link layer protocols. Link layer determines 

how packets are coded and signaled by the h/w device over the medium to which the host 

is attached. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       32                       Dr.Venkateswarulu, Assoc Prof 
 

 
 

5. IOT levels with neat diagram Ans: 

A. IoT Level 1: System has a single node that performs sensing and/or actuation, stores data, 

performs analysis and host the application as shown in fig. Suitable for modeling low cost 

and low complexity solutions where the data involved is not big and analysis requirement are 

not computationally intensive. An e.g., of IoT Level1 is Home automation. 
 

 

IoT Level2: has a single node that performs sensing and/or actuating and local analysis as 

shown in fig. Data is stored in cloud and application is usually cloud based. Level2 IoT systems 

are suitable for solutions where data are involved is big, however, the primary analysis 

requirement is not computationally intensive and can be done locally itself. An e,g., of Level2 

IoT system for Smart Irrigation. 
 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       33                       Dr.Venkateswarulu, Assoc Prof 
 

IoT Level3: system has a single node. Data is stored and analyzed in the cloud application is 

cloud based as shown in fig. Level3 IoT systems are suitable for solutions where the data 

involved is big and analysis requirements are computationally intensive. An example of IoT 

level3 system for tracking package handling. 
 

 

 
IoT Level4: System has multiple nodes that perform local analysis. Data is stored in the cloud 

and application is cloud based as shown in fig. Level4 contains local and cloud based observer 

nodes which can subscribe to and receive information collected in the cloud from IoT devices. 

An example of a Level4 IoT system for NoiseMonitoring. 

 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       34                       Dr.Venkateswarulu, Assoc Prof 
 

IoT Level5: System has multiple end nodes and one coordinator node as shown in fig.The end 

nodes that perform sensing and/or actuation. Coordinator node collects data from the end nodes 

and sends to the cloud. Data is stored and analyzed in the cloud and application is cloud based. 

Level5 IoT systems are suitable for solution based on wireless sensor network, in which data 

involved is big and analysis requirements are computationally intensive. An example of Level5 

system for Forest Fire Detection. 
 
 

 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       35                       Dr.Venkateswarulu, Assoc Prof 
 

 

IoT Level6: System has multiple independent end nodes that perform sensing and/or actuation and 

sensed data to the cloud. Data is stored in the cloud and application is cloud based as shown in fig. 

The analytics component analyses the data and stores the result in the cloud data base. The results 

are visualized with cloud based application. The centralized controller is aware of the status of all 

the end nodes and sends control commands to nodes. An example of a Level6 IoT system for 

Weather Monitoring System. 
 
 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       36                       Dr.Venkateswarulu, Assoc Prof 
 

 

UNIT -2 
 

1. M2M Architecture 

Machine-to-Machine (M2M) refers to networking of machines(or devices) for the purpose of 

remote monitoring and control and data exchange. 

 Term which is often synonymous with IoT is Machine-to-Machine (M2M) . 

 IoT and M2M are often used interchangeably. 

 
Fig. Shows the end-to-end architecture of M2M systems comprises of M2M area networks, 

communication networks and application fomain. 

 An M2M area network comprises of machines( or M2M nodes) whiach have 

embedded network modules for sensing, actuation and communicating various 

communiction protocols can be used for M2M LAN such as ZigBee, Bluetooth, 

M-bus, Wireless M-Bus etc., These protocols provide connectivity between 

M2M nodes within an M2M area network. 

 The communication network provides connectivity to remote M2M area networks. The 

communication network provides connectivity to remote M2M area network. The communication 

networkcan use either wired or wireless network(IP based). While the M2M are networks use either 

properietorary or non-IP baed communication protocols, the communication network uses IP-based 

network. Since non-IP based protocols are used within M2M area network, the M2M nodes within 

one network cannot communicate with nodes in an external network. 

 To enable the communication between remote M2M are network, M2M 
gateways are used. 

 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       37                       Dr.Venkateswarulu, Assoc Prof 
 

 

 

 

 
 

Fig. Shows a block diagram of an M2M 

gateway. 

 

 

The communication between M2M nodes and the M2M gateway is based on the communication 

protocols which are naive to the M2M are network. M2M gateway performs protocol translations 

to enable Ip-connectivity for M2M are networks. M2M gateway acts as a proxy performing 

translations from/to native protocols to/from Internet Protocol(IP). With an M2M gateway, each 

mode in an M2M area network appears as a virtualized node for external M2M area networks. 

 

2. SDN architecture 

Key elements of SDN: 

1) Centralized Network Controller : With decoupled control and data planes and centralized 

network controller, the network administrators can rapidly configure the network. 

 

 

 

 

 

 

 

 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       38                       Dr.Venkateswarulu, Assoc Prof 
 

2) Programmable Open APIs 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       39                       Dr.Venkateswarulu, Assoc Prof 
 

SDN architecture supports programmable open APIs for interface between the SDN application 

and control layers (Northbound interface). 

 

3) Standard Communication Interface (OpenFlow) 

SDN architecture uses a standard communication interface between the control and 

infrastructure layers (Southbound interface). OpenFlow, which is defined by the Open 

Networking Foundation (ONF) is the broadly accepted SDN protocol for the Southbound 

interface. 

 

3. NFV architecture 

 

Network Function Virtualization(NFV) 

 

• Network Function Virtualization (NFV) is a technology that leverages virtualization to 

consolidate the heterogeneous network devices onto industry standard high volume servers, 

switches and storage. 

• NFV is complementary to SDN as NFV can provide the infrastructure on which 

SDN can run. 

Key elements of NFV: NFV Architecture 

Virtualized Network Function (VNF): 

 

VNF is a software implementation of a network function which is capable of running over 

the NFV Infrastructure (NFVI). 

 

1) NFV Infrastructure (NFVI): 

 

NFVI includes compute, network and storage resources that are virtualized. 

 

2) NFV Management and Orchestration: 

 

NFV Management and Orchestration focuses on all virtualization-specific management tasks 

and covers the orchestration and life-cycle management of physical and/or software resources 

that support the infrastructure virtualization, and the life-cycle management of VNFs. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       40                       Dr.Venkateswarulu, Assoc Prof 
 

 

Need for IoT Systems Management 

Managing multiple devices within a single system requires advanced management capabilities. 

1) Automating Configuration : IoT system management capabilities can help in automating the 

system configuration. 

2) Monitoring Operational & Statistical Data : Management systems can help in monitoring 

opeartional and statistical data of a system. This data can be used for fault diagnosis or 

prognosis. 

3) Improved Reliability: A management system that allows validating the system configurations 

before they are put into effect can help in improving the systemreliability. 
4) System Wide Configurations : For IoT systems that consists of multiple devices or nodes, 

ensuring system wide configuration can be critical for the correct functioning of the system. 

5) Multiple System Configurations : For some systems it may be desirable to have multiple valid 
configurations which are applied at different times or in certainconditions. 

 
Retrieving & Reusing Configurations : Management systems which have the capability of 

retrieving configurations from devices can help in reusing the configurations for other devices of 

the same type. 
 

 

 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       41                       Dr.Venkateswarulu, Assoc Prof 
 

 

4. IOT system Management with NETCONFIG – YANG 

YANG is a data modeling language used to model configuration and state data 

manupulated by the NETCONF protocol. 

The generic approach of IoT device management weith NETCONF-YANG.Roles of 

various components are: 

1) Management System 

2) Management API 

3) Transaction Manager 

4) Rollback Manager 

5) Data Model Manager 

6) Configuration Validator 

7) Configuration Database 

8) Configuration API 

9) Data Provider API 
 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       42                       Dr.Venkateswarulu, Assoc Prof 
 

 

 
 

 

 

1) Management System : The operator uses a management system to send NETCONF messages to 

configure the IoT device and receives state information and notifications from the device as 

NETCONF messages. 

2) Management API : allows management application to start NETCONF sessions. 

3) Transaction Manager: executes all the NETCONF transactions and ensures that ACID properties 

hold true for the trasactions. 

4) Rollback Manager : is responsible for generating all the transactions necessary to rollback a 
current configuration to its original state. 

5) Data Model Manager : Keeps track of all the YANG data models and the corresponding managed 

objects. Also keeps track of the applications which provide data for each part of a data m,odel. 

6) Configuration Validator : checks if the resulting configuration after applying a transaction would 
be a valid configuration. 

7) Configuration Database : contains both configuration and operastional data. 

8) Configuration API : Using the configuration API the application on the IoT device can be read 

configuration data from the configuration datastore and write opeartional data to the opearational 

datastore. 

9) Data Provider API: Applications on the IoT device can register for callbacks for various events 

using the Data Provider API. Through the Data Provider API, the applications can report statistics 

and opeartional data. 

 
5. Limitations of SNMP 

 

SNMP is stateless in nature and each SNMP request contains all the information to process the 

request. The application needs to be intelligent to manage the device. 

1. SNMP is a connectionless protocol which uses UDP as the transport protocol, making it unreliable 

as there was no support for acknowledgement of requests. 

2. MIBs often lack writable objects without which device configuration is not possible using SNMP. 
3. It is difficult to differentiate between configuration and state data in MIBs. 

4. Retrieving the current configuration from a device can be difficult with SNMP. Earlier versions of 

SNMP did not have strong security features. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       43                       Dr.Venkateswarulu, Assoc Prof 
 

 

 

 
 

UNIT – 3 

 

 

 

1. IOT architecture 

 

State of the art 

IoT architecture varies from solution to solution, based on the type of solution which 

we intend to build. IoT as a technology majorly consists of four main components, over 

which an architecture is framed. 

1) Sensors 

2) Devices 

3) Gateway 

4) Cloud 
 

Stages of IoT Architecture Stage 

1:Sensors/actuators 

Sensors collect data from the environment or object under measurement and turn it into useful data. 

Think of the specialized structures in your cell phone that detect the directional pull of gravity 

and the phone's relative position to the “thing” we call the earth and convert it into data that 

your phone can use to orient the device. 

Actuators can also intervene to change the physical conditions that generate the data. An actuator 

might, for example, shut off a power supply, adjust an air flow valve, or move a robotic gripper 

in an assembly process. 

The sensing/actuating stage covers everything from legacy industrial devices to robotic camera 

systems, water level detectors, air quality sensors, accelerometers, and heart rate monitors. And 

the scope of the IoT is expanding rapidly, thanks in part to low-power wireless sensor network 

technologies and Power over Ethernet, which enable devices on a wired LAN to operate without 

the need for an A/C power source. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       44                       Dr.Venkateswarulu, Assoc Prof 
 

 

 
 

Stage 2:- 

The Internet gateway 

The data from the sensors starts in analog form. That data needs to be aggregated and converted 

into digital streams for further processing downstream. Data acquisition systems (DAS) perform 

these data aggregation and conversion functions. The DAS connects to the sensor network, 

aggregates outputs, and performs the analog-to-digital conversion. The Internet gateway receives 

the aggregated and digitized data and routes it over Wi-Fi, wired LANs, or the Internet, to Stage 3 

systems for further processing. Stage 2 systems often sit in close proximity to the sensors and 

actuators. 

 

For example, a pump might contain a half-dozen sensors and actuators that feed data into a data 

aggregation device that also digitizes the data. This device might be physically attached to the pump. 

An adjacent gateway device or server would then process the data and forward it to the Stage 3 or 

Stage 4 systems. Intelligent gateways can build on additional, basic gateway functionality by adding 

such capabilities as analytics, malware protection, and data management services. These systems 

enable the analysis of data streams in real time. 
 

 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       45                       Dr.Venkateswarulu, Assoc Prof 
 

 

 

 

Stage 3:- Edge IT 

Once IoT data has been digitized and aggregated, it's ready to cross into the realm of IT. However, 

the data may require further processing before it enters the data center. This is where edge IT 

systems, which perform more analysis, come into play. Edge IT processing systems may be located 

in remote offices or other edge locations, but generally these sit in the facility or location where the 

sensors reside closer to the sensors, such as in a wiring closet. Because IoT data can easily eat up 

network bandwidth and swamp your data center resources, it's best to have systems at the edge 

capable of performing analytics as a way to lessen the burden on core IT infrastructure. You'd also 

face security concerns, storage issues, and delays processing the data. With a staged approach, you 

can preprocess the data, generate meaningful results, and pass only those on. For example, rather 

than passing on raw vibration data for the pumps, you could 

aggregate and convert the data, analyze it, and send only projections as to when 
each device will fail or need service. 

 

Stage 4:- 

The data center and cloud 

Data that needs more in-depth processing, and where feedback doesn't have to be immediate, gets 

forwarded to physical data center or cloud-based systems, where more powerful IT systems can 

analyze, manage, and securely store the data. It takes longer to get results when you wait until data 

reaches Stage 4, but you can execute a more in-depth analysis, as well as combine your sensor data 

with data from other sources for deeper insights. Stage 4 processing may take placeon-premises, 

in the cloud, or in a hybrid cloud system, but the type of processing executed in this stage remains 

the same, regardless of the platform. 

 

2. Data types and List Datatypes 

 
Every value in Python has a datatype. Since everything is an object in Python programming, data 

types are actually classes and variables are instance (object) of these classes. 

 

There are various data types in Python. Some of the important types are listed below. 

 

Python Numbers 

 

Integers, floating point numbers and complex numbers falls under Python numbers category. They 

are defined as int, float and complex class in Python. We can use the type() function to know which 

class a variable or a value belongs to and the isinstance() function to check if an object belongs to 

a particular class. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       46                       Dr.Venkateswarulu, Assoc Prof 
 

 

Script.py 

 

1. a = 5 

2. print(a, "is of type", type(a)) 

3. a = 2.0 

4. print(a, "is of type", type(a)) 

5. a = 1+2j 

6. print(a, "is complex number?", isinstance(1+2j,complex)) 

 

 

Integers can be of any length, it is only limited by the memory available. A floating point number 

is accurate up to 15 decimal places. Integer and floating points are separated by decimal points. 1 is 

integer, 1.0 is floating point number. Complex numbers are written in the form, x + yj, where x is 

the real part and y is the imaginary part. Here are some examples. 

 
>>> a = 1234567890123456789 

 

>>>a 

1234567890 

123456789 

 

>>> b = 0.1234567890123456789 

 

>>>b 

0.12345678 

901234568 

 

>>> c = 1+2j 

 

>>> c (1+2j) 

Python List 

 

 

 
List is an ordered sequence of items. It is one of the most used datatype in Python and is very flexible. 

All the items in a list do not need to be of the same type. Declaring a list is pretty straight forward. 

Items separated by commas are enclosed within brackets [ ]. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       47                       Dr.Venkateswarulu, Assoc Prof 
 

 

Course Name: INTERNET OF THINGS 

Year/Sem: IV-I 

>>> a = [1, 2.2, 

'python'] 

 

We can use the slicing operator [ ] to extract an item or a range of items from a list. Index starts form 

0 in Python. 

 

Script.py 

1. a = [5,10,15,20,25,30,35,40] 

2. # a[2] = 15 

3. print("a[2] = ", a[2]) 

4. # a[0:3] = [5, 10, 15] 

5. print("a[0:3] = ", a[0:3]) 

6. # a[5:] = [30, 35, 40] 

7. print("a[5:] = ", a[5:]) 
 

Lists are mutable, meaning; value of elements of a list can be altered. 

>>> a = [1,2,3] 

>>> a[2]=4 

Python Tuple 

Tuple is an ordered sequences of items same as list. The only difference is that tuples are immutable. 

Tuples once created cannot be modified. Tuples are used to write- protect data and are usually faster 

than list as it cannot change dynamically. It is defined within parentheses () where items are 

separated by commas. 

 

>>> t = (5,'program', 1+3j) 

 

Python Strings 

String is sequence of Unicode characters. We can use single quotes or double quotes to represent 

strings. Multi-line strings can be denoted using triple quotes, ''' or """. 

 

>>> s = "This is a string" 

>>> s = '''a multiline 

 
Like list and tuple, slicing operator [ ] can be used with string. Strings are immutable. 

Script.py 

 
a = {5,2,3,1,4} 
#printing set variable print("a = ", a) 

# data type of variable a print(type(a)) 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       48                       Dr.Venkateswarulu, Assoc Prof 
 

 

 

We can perform set operations like union, intersection on two sets. Set have unique values. They 

eliminate duplicates. Since, set are unordered collection, indexing has no meaning. Hence the slicing 

operator [] does not work. It is generally used when we have a huge amount of data. Dictionaries 

are optimized for retrieving data. We must know the key to retrieve the value. In Python, dictionaries 

are defined within braces {} with each item being a pair in the form key:value. Key and value 

can be of anytype. 

 

>>> d = {1:'value','key':2} 

 

>>> type(d) 

 

<class 'dict'> 

 

We use key to retrieve the respective value. But not the other way around. 

 

Script.py 
d = 

{1:'value',' key':2} print(type( d)) print("d[1] 
= ", d[1]); 

print("d['key'] = 
", d['key']); # Generates error print("d[2] = ", d[2]); 

 
 

Python data structures Python if...else Statement 

Every value in Python has a datatype. Since everything is an object in Python programming, data types are 

actually classes and variables are instance (object) of these classes. Decision making is required when we 
want to execute a code only if a certain condition is satisfied. 

The if…elif…else statement is used in Python for decision making. 

Python if Statement Syntax 

If test 

expressio n: 

statement( s) 
 

Here, the program evaluates the test expression and will execute statement(s) only if the text expression is 
True. 

If the text expression is False, the statement(s) is not executed. In Python, the body of the if statement is 

indicated by the indentation. Body starts with an indentation and the first unindented line marks the end. 
Python interprets non-zero values as True. None and 0 are interpreted as False. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       49                       Dr.Venkateswarulu, Assoc Prof 
 

 

 
 

 

Python if Statement Flowchart 

 
 

Example: Python if Statement 
# If the number is positive, we print an appropriate message num = 3 

if num > 0: 
print(num, "is a positive 

 
number.") print("This is always printed.") 
num = -1 if num > 0: print(num, "is a positive 

number.") print("This is also always printed.") 

 

When you run the program, the output will be: 
3 is a positive number This is always printed 

This is also always printed. 
 

In the above example, num > 0 is the test expression. The body of if is executed only if this evaluates to True. 

When variable num is equal to 3, test expression is true and body inside body of if is executed. If variable num 

is equal to -1, test expression is false and body inside body of if is skipped. The print() statement falls outside 

of the if block (unindented). Hence, it is executed regardless of the test expression. 
 

Python if...else Statement Syntax 

if test 

expressi on: 
Body of if 
else: 

Body of else 

 

The if..else statement evaluates test expression and will execute body of if only when test condition is True. 
If the condition is False, body of else is executed. Indentation is used to separate the blocks. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       50                       Dr.Venkateswarulu, Assoc Prof 
 

 

 
 

Python if..else Flowchart 
 

 

Example of if...else 
 

# Program checks if the number is positive or negative # And displays an appropriate message 
num = 3 

# Try these two variations as well. # num = -5 

# num = 0 

if num >= 0: print("Positiv e or Zero") 

else: 
print("Negative number") 

In the above example, when num is equal to 3, the test expression is true and body of if is executed and body 

of else is skipped. 
 

If num is equal to -5, the test expression is false and body of else is executed and body of if is skipped. 
 

If num is equal to 0, the test expression is true and body of if is executed and body of else is skipped. 

Python if...elif...else Statement Syntax if test expression: 
Body of if 
elif test expression: 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       51                       Dr.Venkateswarulu, Assoc Prof 
 

 

 
 

Body of elif else: 

Body of else 
 

The elif is short for else if. It allows us to check for multiple expressions. If the condition for if is False, 

it checks the condition of the next elif block and so on. If all the conditions are False, body of else is executed. 
Only one block among the several if...elif...else blocks is executed according to the condition. The if block can 

have only one else block. But it can have multiple elif blocks. 

 
Python File Methods Files 

File is a named location on disk to store related information. It is used to permanently store data in a non- 

volatile memory (e.g. hard disk). Since, random access memory (RAM) is volatile which loses its data when 

computer is turned off, we use files for future use of the data. When we want to read from or write to a file we 

need to open it first. When we are done, it needs to be closed, so that resources that are tied with the file are 
freed. Hence, in Python, a file operation takes place in the following order. 

 

Open a file 
Read or write (perform operation) 

Close the file 
 

How to open a file? 

 
Python has a built-in function open() to open a file. This function returns a file object, also called a handle, as 
it is used to read or modify the file accordingly. 

 

>>> f = open("test.txt") # open file in current directory 

>>> f = open("C:/Python33/README.txt") # specifying full path 
 

We can specify the mode while opening a file. In mode, we specify whether we want to read 'r', write 'w' or  

append 'a' to the file. We also specify if we want to open the file in text mode or binary mode. The default is 

reading in text mode. In this mode, we get strings when reading from the file. On the other hand, binary mode 
returns bytes and this is the mode to be used when dealing with non-text files like image or exe files. 

 
Python File Modes 

Mode Description 

'r' Open a file for reading. (default) 

'w' Open a file for writing. Creates a new file if it does not exist or truncates the file if it 

exists. 

'x' Open a file for exclusive creation. If the file already exists, the operation fails. 

'a' Open for appending at the end of the file without truncating it. Creates a new file if it 

does not exist. 

't' Open in text mode. (default) 

'b' Open in binary mode. 

'+' Open a file for updating (reading and writing) 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       52                       Dr.Venkateswarulu, Assoc Prof 
 

 

f = open("test.txt") 

# equivalent to 'r' or 'rt' 

f= open("test.txt",'w') # write in text mode 
f = open("img.bmp",'r+b') # read and write in binary mode 

 

 

Unlike other languages, the character 'a' does not imply the number 97 until it is encoded using ASCII (or other 

equivalent encodings). Moreover, the default encoding is platform dependent. In windows, it is 'cp1252' but 

'utf-8' in Linux. So, we must not also rely on the default encoding or else our code will behave differently in 
different platforms. Hence, when working with files in text mode, it is highly recommended to specify the 

encoding type. 
 

f = open("test.txt",mode = 'r',encoding = 'utf-8') 

 
 

Python Program with Raspberry PI with focus of interfacing external gadgets, controlling output, reading input 

from pins. 

Light an LED through Python program. 
 

Solution: 
One of the biggest selling points of the Raspberry Pi is its GPIO, or General Purpose Input/Output ports. They 

are the little pins sticking out of the circuit board and allow you to plug various devices into your Raspberry 

Pi. With a little programming, you can then control them or detect what they are doing. 

In this tutorial I am going to show you how to light an LED. In addition to your Raspberry Pi running Raspbian, 

what you will need is: 

 

 

 

 
A Breadboard 

An LED 

A 330 ohm resistor 

The Breadboard: 

he breadboard is a way of connecting electronic components to each other without having to solder 

them together. They are often used to test a circuit design before creating a Printed Circuit Board 

(PCB). 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       53                       Dr.Venkateswarulu, Assoc Prof 
 

 

The holes on the breadboard are connected in a pattern. 
 

 

 

 
 

With the breadboard in the CamJam EduKit, the top row of holes are all connected together – marked with red 
dots. And so are the second row of holes – marked with blue dots. The same goes for the two rows of holes at 

the bottom of the breadboard. 

In the middle, the columns of wires are connected together with a break in the middle. So, for example, all the 

green holes marked are connected together, but they are not connected to the yellow holes, nor the purple ones. 

Therefore, any wire you poke into the green holes will be connected to other wires poked into the other green 
holes. 

 

The LED: 
 

When you pick up the LED, you will notice that one leg is longer than the other. The longer leg (known as the 

‘anode’), is always connected to the positive supply of the circuit. The shorter leg (known as the ‘cathode’) is 

connected to the negative side of the power supply, known as ‘ground’. 

 
LEDs will only work if power is supplied the correct way round (i.e. if the ‘polarity’ is correct). You will not 

break the LEDs if you connect them the wrong way round – they will just not light. If you find that they do 
not light in your circuit, it may be because they have been connected the wrong way round. 

 

 

 

LED stands for Light Emitting Diode, and glows when electricity is passed through it. 

 

The Resistor: 
You must ALWAYS use resistors to connect LEDs up to the GPIO pins of the Raspberry Pi. The 

Raspberry Pi can only supply a small current (about 60mA). The LEDs will want to draw more, 
and if allowed to they will burn out the Raspberry Pi. Therefore putting the resistors in the circuit 

will ensure that only this small current will flow and the Raspberry Pi will not be damaged. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       54                       Dr.Venkateswarulu, Assoc Prof 
 

 

 

Resistors are a way of limiting the amount of electricity going through a circuit; specifically, they limit 
the amount of ‘current’ that is allowed to flow. The measure of resistance is calledthe 

Ohm (Ω), and the larger the resistance, the more it limits the current. The value of a resistor is marked 
with coloured bands along the length of the resistor body. 

You will be using a 330Ω resistor. You can identify the 330Ω resistors by the colour bands along the 

body. The colour coding will depend on how many bands are on the resistors supplied: 
 

If there are four colour bands, they will be Orange, Orange, Brown, and then Gold. 

If there are five bands, then the colours will be Orange, Orange, Black, Black, Brown. 
It does not matter which way round you connect the resistors. Current flows in both ways through them. 

 

Jumper Wires: 
Jumper wires are used on breadboards to ‘jump’ from one connection to another. The ones you will be using 

in this circuit have different connectors on each end. The end with the ‘pin’ will go into the Breadboard. The 
end with the piece of plastic with a hole in it will go onto the Raspberry Pi’s GPIO pins. 

 

 

 

 

The Raspberry Pi's GPIO Pins : 
 

GPIO stands for General Purpose Input Output. It is a way the Raspberry Pi can control 

and monitor the outside world by being connected to electronic circuits. The Raspberry Pi is able to control 

LEDs, turning them on or off, or motors, or many other things. It is also able to detect whether a switch has 
been pressed, or temperature, or light. In the CamJam EduKit you will learn to control LEDs and a buzzer, 

and detect when a button has been pressed. The diagram below left shows the pin layout for a Raspberry Pi 

Models A and B (Rev 2 - the original Rev 1 Pi is slightly different), looking at the Raspberry Pi with the pins 
in the top right corner. The new 40 pin Raspberry Pi’s shares exactly the same layout of pins for the top 13 

rows of GPIOpins. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       55                       Dr.Venkateswarulu, Assoc Prof 
 

 

Building the Circuit: 
 

 

The circuit consists of a power supply (the Raspberry Pi), an LED that lights when the power is applied, and 

a resistor to limit the current that can flow through the circuit. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       56                       Dr.Venkateswarulu, Assoc Prof 
 

 

 

You will be using one of the ‘ground’ (GND) pins to act like the ‘negative’ or 0 volt ends of a battery. The 
‘positive’ end of the battery will be provided by a GPIO pin. Here we will be using pin 18. When they are 
‘taken high’, which means it outputs 3.3 volts, the LED will light. Now take a look at the circuit diagram below. 
You should turn your Raspberry Pi off for the next bit, just in case you accidentally short something out. 

 

 
 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       57                       Dr.Venkateswarulu, Assoc Prof 
 

 

 

 

Use one of the jumper wires to connect a ground pin to the rail, marked with blue, on the breadboard. 

The female end goes on the Raspberry Pi's pin, and the male end goes into a hole on the breadboard. 

Then connect the resistor from the same row on the breadboard to a column on the breadboard, as 

shown above. 

Next, push the LEDs legs into the breadboard, with the long leg (with the kink) on the right. 
Lastly, complete the circuit by connecting pin 18 to the right hand leg of the LED. This is shown here 

with the orange wire. 

 
 

The Code: 
 

You are now ready to write some code to switch the LED on. Turn on your Raspberry Pi and open the terminal 

window. 
Create a new text file “LED.py” by typing the following: 

nano LED.py 
Type in the following code: 

import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) 

GPIO.setup(18,GPIO.OUT) 
 

print "LED on" GPIO.output(18,GPIO.HIGH) 

time.sleep(1) print "LED off" 

GPIO.output(18,GPIO.LOW) 
Once you have typed all the code and checked it, save and exit the text editor with “Ctrl + x” then “y” then 

“enter”. 
 

Running the Code: 
To run this code type: 

sudo python LED.py 
You will see the LED turn on for a second and then turn off. 

 

If your code does not run and an error is reported, edit the code again using nano LED.py. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       58                       Dr.Venkateswarulu, Assoc Prof 
 

 

 

 

 

 
Introduction to Raspberry Pi 

Raspberry Pi GPIO Pin Description 

Basic building blocks of IOT Device 

Raspberry Pi interfaces 

Other IOT devices 

UNIT – 4 

 
 

Introduction to Raspberry Pi Raspberry Pi 

Raspberry Pi is a low-cost mini-computer with the physical size of a credit card. Raspberry Pi 
runs various flavors of Linux and can perform almost all tasks that a normal desktop computer can do.  

Raspberry Pi also allows interfacing sensors and actuators through the general purpose I/O pins. Since 
Raspberry Pi runs Linux operating system, it supports Python "out of the box". Raspberry Pi is a low-cost mini- 

computer with the physical size of a credit card. Raspberry Pi runs various flavors of Linux and can perform 

almost all tasks that a normal desktop computer can do. Raspberry Pi also allows interfacing sensors and 

actuators through the general purpose I/O pins. Since Raspberry Pi runs Linux operating system, it supports 
Python "out of the box". 

Raspberry Pi 
 

 

Linux on Raspberry Pi 
 

Raspbian: Raspbian Linux is a Debian Wheezy port optimized for Raspberry Pi. 

Arch: Arch is an Arch Linux port for AMD devices. 

Pidora: Pidora Linux is a Fedora Linux optimized for Raspberry Pi. 

RaspBMC: RaspBMC is an XBMC media-center distribution for Raspberry Pi. 

OpenELEC: OpenELEC is a fast and user-friendly XBMC media-center distribution. 

RISC OS: RISC OS is a very fast and compact operating system. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       59                       Dr.Venkateswarulu, Assoc Prof 
 

 

Course Name: INTERNET OF THINGS 

Year/Sem: IV-I 

Course Code: CS724PE 
Regulation: R18 

 

 

 

Raspberry Pi GPIO Pin Description Raspberry Pi GPIO 
 

 

 

 

 

 

 

 

 

 

 
 

 
 

Basic 

building 

blocks of 

IOT Device 
 

 

Basic building blocks of an IoT Device 
 

Sensing: Sensors can be either on-board the IoT device or attached to the device. 

Actuation: IoT devices can have various types of actuators attached that allow taking actions upon 

the physical entities in the vicinity of thedevice. 

Communication: Communication modules are responsible for sending collected data to other devices 

or cloud-based servers/storage and receiving data from other devices and commands from remote 

applications. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       60                       Dr.Venkateswarulu, Assoc Prof 
 

 

 

 

Analysis & Processing: Analysis and processing modules are responsible for making sense of the 

collected data. 
 

 

 

 

Block diagram of an IoT Device 

Raspberry Pi interfaces 

Serial: The serial interface on Raspberry Pi has receive (Rx) and transmit (Tx) pins for 

communication with serial peripherals. 

SPI: Serial Peripheral Interface (SPI) is a synchronous serial data protocol used for communicating 

with one or more peripheral devices. 

I2C: The I2C interface pins on Raspberry Pi allow you to connect hardware modules. I2C interface 

allows synchronous data transfer with just two pins - SDA (data line) and SCL (clock line) 

 
Other IOT devices 

pcDuino 

BeagleBone Black 

Cubieboard 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       61                       Dr.Venkateswarulu, Assoc Prof 
 

 

 
 

 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       62                       Dr.Venkateswarulu, Assoc Prof 
 

 

 

 

UNIT – 5 
 

INTRODUCTION TO CLOUD COMPUTING 

CLOUD STORAGE API’S 

WAMP FOR IOT 

PYTHON PACKAGES 

PYTHON WEB APPLICATION FRAMEWORK – DIJANGO 

CASE STUDY IN IOT- SMART CITIES 
 

INTRODUCTION TO CLOUD COMPUTING 

 

The Internet of Things (IoT) involves the internet-connected devices we use to perform the processes and 
services that support our way of life. Another component set to help IoT succeed is cloud computing, which 

acts as a sort of front end. Cloud computing is an increasingly popular service that offers several advantages to 

IOT, and is based on the concept of allowing users to perform normal computing tasks using services delivered 
entirely over the internet. A worker may need to finish a major project that must be submitted to a manager, but 

perhaps they encounter problems with memory or space constraints on their computing device. Memory and 

space constraints can be minimized if an application is instead hosted on the internet. The worker can use a 
cloud computing service to finish their work because the data is managed remotely by a server. Another 

example: you have a problem with your mobile device and you need to reformat it or reinstall the operating 

system. You can use Google Photos to upload your photos to internet-based storage. After the reformat or 

reinstall, you can then either move the photos back to you device or you can view the photos on your device 
from the 

 
internet when you want. 
Concept 

 

In truth, cloud computing and IoT are tightly coupled. The growth of IoT and the rapid development of 

associated technologies create a widespread connection of “things.” This has lead to the production of large 

amounts of data, which needs to be stored, processed and accessed. Cloud computing as a paradigm for big 

data storage and analytics. While IoT is exciting on its own, the real innovation will come from combining it 
with cloud computing. The combination of cloud computing and IoT will enable new monitoring services and 

powerful processing of sensory data streams. For example, sensory data can be uploaded and stored with cloud 

computing, later to be used intelligently for smart monitoring and actuation with other smart devices. 
Ultimately, the goal is to be able to transform data to insight and drive productive, cost-effective action from 

those insights. The cloud effectively serves as the brain to improved decision-making and optimized internet- 

based interactions.However, when IoT meets cloud, new challenges arise. There is an urgent need for novel 
network architectures that seamlessly integrate them. The critical concerns during integration are quality of 

service (QoS) and quality of experience (QoE), as well as data security, privacy and reliability. The virtual 

infrastructure for practical mobile computing and interfacing includes integrating applications, storage devices, 

monitoring devices, visualization platforms, analytics tools and client delivery. Cloud computing offers a 
practical utility-based model that will enable businesses and users to access applications on demand anytime 

and from anywhere. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       63                       Dr.Venkateswarulu, Assoc Prof 
 

 

 
 
 

 
 

Service models 
 

Service delivery in cloud computing comprises three different service models: software as a service (SaaS), 

platform as a service (PaaS), and infrastructure as a service (IaaS). 
 

Software as a service (SaaS) provides applications to the cloud’s end user that are mainly accessed via a web 

portal or service-oriented architecture-based web service technology. These services can be seen as ASP 
(application service provider) on the application layer. Usually, a specific company that uses the service would 

run, maintain and give support so that it can be reliably used over a long period of time. 

Platform as a service (PaaS) consists of the actual environment for developing and provisioning cloud 
applications. The main users of this layer are developers that want to develop and run a cloud application for a 

particular purpose. A proprietary language was supported and provided by the platform (a set of important 

basic services) to ease communication, monitoring, billing and other aspects such as startup as well as to ensure 
an application’s scalability and flexibility. Limitations regarding the programming languages supported, the 

programming model, the ability to access resources, and the long-term persistence are possible disadvantages. 
 

Infrastructure as a service (IaaS) provides the necessary hardware and software upon which a customer can 

build a customized computing environment. Computing resources, data storage resources and the 

communications channel are linked together with these essential IT resources to ensure the stability of 
applications being used on the cloud. Those stack models can be referred to as the medium for IoT, being used 

and conveyed by the users in different methods for the greatest chance of interoperability. This includes 

connecting cars, wearables, TVs, smartphones, fitness equipment, robots, ATMs, and vending machines as well 

as the vertical applications, security and professional services, and analytics platforms that come withthem. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       64                       Dr.Venkateswarulu, Assoc Prof 
 

 

 
 

 

 

CLOUD STORAGE API’S 

 

A cloud storage API is an application program interface that connects a locally-based application to a cloud- 

based storage system, so that a user can send data to it and ccess and work with data stored in it. To the 
application, the cloud storage system is just another target device, like tape or disk-based storage. An 

application program interface (API) is code that allows two software programs to communicate with each other. 

The API defines the correct way for a developer to write a program that requests services from an operating 

system (OS) or other application. APIs are implemented by function calls composed of verbs and nouns. The 
required syntax is described in the documentation of the application being called. 

 

How APIs work 

APIs are made up of two related elements. The first is a specification that describes how 

 
information is exchanged between programs, done in the form of a request for processing and a return of the 
necessary data. The second is a software interface written to that specification and published in some way for 

use.The software that wants to access the features and capabilities of the API is said to call it, and the software 

that creates the API is said to publish it. 

 

Cloud Models are relied on Communication API 

Communication API facilitate data transfer, control information transfer from application 

to cloud, one service to another 

It also exist in the form of Communication Protocols 

It supports RPC, PUBSUB and WAMP 

Eg. Popular API is RESTful API (communication in cloud model) 

Django web framework is used to implement Communication API 
 

WAMP FOR IOT 

 

Web Application Messaging Protocol (WAMP) is a sub-protocol of Websocket which provides publish- 

subscribe and remote procedure call (RPC) messaging patterns. 

 

 

WAMP 

 

Transport: Transport is channel that connects two peers. 

Session: Session is a conversation between two peers that runs over a transport. 
 
 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       65                       Dr.Venkateswarulu, Assoc Prof 
 

 

Client: Clients are peers that can have one or more roles. In publish-subscribe model client can have 

following roles: 

Publisher: Publisher publishes events (including payload) to the topic maintained by the broker. 

Subscriber: Subscriber subscribes to the topics and receives the events including thepayload. In RPC 

model client can have following roles: – 
 

Caller: Caller issues calls to the remote procedures along with call arguments. – Callee: Callee 

executes the procedures to which the calls are issued by the caller and returns the results back to the 

caller. • Router: Routers are peers that perform generic call and event routing. In publish-subscribe 

model Router has the role of a Broker: – Broker: Broker acts as a router and 

 
routes messages published to a topic to all subscribers subscribed to thetopic. In RPC model Router has the 
role of a Broker: – 

Dealer: Dealer acts a router and routes RPC calls from the Caller to the Callee and routes 
results from Callee to Caller. 

Application Code: Application code runs on the Clients (Publisher, Subscriber, Callee or Caller). 
PYTHON PACKAGES JSON 

JavaScript Object Notation (JSON) is an easy to read and write data-interchange format. JSON is used as an 

alternative to XML and is easy for machines to parse and generate. 

JSON is built on two structures: a collection of name–value pairs (e.g., a Python dictionary) and ordered lists 
of values (e.g., a Python list). 

XML 
XML (Extensible Markup Language) is a data format for structured document interchange. The Python 

minidom library provides a minimal implementation of the Document Object Model interface and has an API 

similar to that in other languages. 
HTTPLib & URLLib 
HTTPLib2 and URLLib2 are Python libraries used in network/internet programming. 
SMTPLib 

Simple Mail Transfer Protocol (SMTP) is a protocol which handles sending email and routing email between 

mail servers. The Python SMTPLib module provides an SMTP client session object that can be used to send 
email. 

NumPy 
NumPy is a package for scientific computing in Python. NumPy provides support for large multi-dimensional 

arrays and matrices. 
Scikit-learn 

Scikit-learn is an open source machine learning library for Python that provides implementations of various 

machine learning algorithms for classification, clustering, regression and dimension reduction problems. 
 

 

PYTHON WEB APPLICATION FRAMEWORK – DIJANGO 

Django is an open source web application framework for developing web applications in Python. 
A web application framework in general is a collection of solutions, packages and best practices 
that allows development of web applications and dynamic websites. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       66                       Dr.Venkateswarulu, Assoc Prof 
 

 

sed on the Model–Template–View architecture and provides data model from the business rules and the 

user interface. 

Django provides a unified API to a database backend. 

 

 

 

Thus, web applications built with Django can work with different databases without requiring any 
code changes. 

With this flexibility in web application design combined with the powerful capabilities of the Python 

language and the Python ecosystem, Django is best suited for cloud applications. 

Django consists of an object-relational mapper, a web templating system and a regular- expression- 

based URL dispatcher. 
 

Django uses a Model–Template–View (MTV) framework. 

Model 
The model acts as a definition of some stored data and handles the interactions with the database. In 

a web application, the data can be stored in a relational database, non-relational database, an XML 

file, etc. A Django model is a Python class that outlines the variables and methods for a particular 

type of data. 

Template 
In a typical Django web application, the template is simply an HTML page with a few extra 

placeholders. Django’s template language can be used to create various forms of text files (XML,  

email, CSS, Javascript, CSV, etc.). 

View 

The view ties the model to the template. The view is where you write the code that actually generates 

the web pages. View determines what data is to be displayed, retrieves the data from the database and 

passes the data to the template. 
 

Case Study in IoT: Smart Cities 

 
 

The Internet-of-Things (IoT) is the novel cutting-edge technology which proffers to connect plethora of digital 
devices endowed with several sensing, actuation and computing capabilities with the Internet, thus offers 

manifold new services in the context of a smart city. The appealing IoT services and big data analytics are 

enabling smart city initiatives all over the world. These services are transforming cities by improving 
infrastructure, transportation systems, reduced traffic congestion, waste management and the quality of human 

life. In this paper, we devise a taxonomy to best bring forth a generic overview of IoT paradigm for smart cities, 

integrated information and communication technologies (ICT), network types, possible opportunities and 
major requirements. Moreover, an overview of the up-to-date efforts from standard bodies is presented. Later, 

we give an overview of existing open source IoT platforms for realizing smart city applications followed by 

several exemplary case studies. In addition, we summarize the latest synergies and initiatives worldwide taken 

to promote IoT in the context of smart cities. Finally, we highlight several challenges in order to give future 
research directions. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       67                       Dr.Venkateswarulu, Assoc Prof 
 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       68                       Dr.Venkateswarulu, Assoc Prof 
 

 

This section presents a taxonomy of IoT based smart cities which categorizes the literature on the basis of 

existing communication protocols, major service providers, network types, standardization efforts, offered 
services, and crucial requirements. 

 

Communication Protocols 

 

IoT based smart city realization significantly relies on numerous short and wide range communication 
protocols to transport data between devices and backend servers. Most prominent short range wireless 

technologies include Zig-Bee, Bluetooth, Wi-Fi, Wireless Metropolitan Area Network (WiMAX) and IEEE 

802.11p which are primarily used in smart metering, e-healthcare and vehicular communication. Wide range 
technologies such as Global System for Mobile communication (GSM) and GPRS, Long-Term Evolution 

(LTE), LTE- Advanced are commonly utilized in ITS such as vehicle-to infrastructure (V2I), mobile e- 

healthcare, smart grid and infotainment services. Additionally, LTE-M is considered as an evolution for cellular 

IoT (C-IoT). In Release 13, 3GPP plans to further improve coverage, battery lifetime as well as device 
complexity [7]. Besides well-known existing protocols, LoRa alliance standardizes the LoRaWAN protocol to 

support smart city applications to primarily ensure interoperability between several operators. Moreover, 

SIGFOX is an ultra narrowband radio technology with full star-based infrastructure offers a high scalable 
global network for realizing smart city applications with extremely low power consumption. A comparative 

summary2 of the major communication protocols. 
 

Service Providers 

Pike Research on smart cities estimated this market will grow to hundreds of billion dollars by 2020, with an 

annual growth of nearly 16 billion. IoT is recognized as a potential source to increase revenue of service 

providers. Thus, well-known worldwide service providers have already started exploring this novel cutting 

edge communication paradigm. Major service providers include Telefonica, SK telecom, Nokia, Ericsson, 
Vodafone, NTT Docomo, Orange, Telenor group and AT&T which offer variety of services and platforms for 

smart city applications such as ITS and logistics, smart metering, home automation and e-healthcare. 

 

Network Types 

IoT based smart city applications rely on numerous network topologies to accomplish a fully autonomous 

environment. The capillary IoT networks offer services over a short range. Examples include wireless local 

area networks (WLANs), BANs and wireless personal area networks (WPANs). The application areas include 

indoor e-healthcare services, home automation, street lighting. On the other hand, applications such as ITS, 
mobile e-healthcare and waste management use wide area networks (WANs), metropolitan area networks 

(MANs), and mobile communication networks. The above networks pose distinct features in terms of data, 

size, coverage, latency requirements, and capacity. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       69                       Dr.Venkateswarulu, Assoc Prof 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

14.Tutorial topics and Questions 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       70                       Dr.Venkateswarulu, Assoc Prof 
 

 

 

 
Define Internet of Things? 

UNIT WISE 2 MARKS 

UNIT-I 

A. Internet of Things (loT) comprises things that have unique identities and are 
connected to the Internet. 

 

What are the characteristics of IoT? 

The characteristics of IoT 

Self-Configuring 

Dynamic and Self-Adapting 

Interoperable Communication Protocols 

Unique Identify 

Integrated into information Network 
 

List of IoT protocols used in Link Layer? 
A. IoT protocols used in Link Layer are 

1. 802.3-Ethernet 2. 802.11-WiFi 
3. 802.16-WiMax 
4. 802.15.4-LR_WPAN 2G/3G/4G 

 

What are IoT protocols used in Transport layer? 

There are only two protocols used in Transport layer are TCP and UDP 

 

5. List out the various applications of IoT? 

A. The various applications of 
1.Cities 

2.Environment 

3.Energy 
4.Retail 

5.Logistics 

6.Agriculture 

7. Industry Health & Lifestyle 
8. IoTHome 

 

6. Define Knowledge? 

A. Knowledge is inferred from information by organizing and structuring, information and is put into action 

to achieve specific objectives. The various protocols used in Network Layer are 
1. IPv4 

2. IPv6 6LoWPAN 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       71                       Dr.Venkateswarulu, Assoc Prof 
 

 

7. What are the communications models are used in IoT? 

A. IoT communication models are 
Request-Response 

Publish-Subscribe 

Push-Pull 
Exclusive Pair. 

 

8. Define REST-based communication Protocol? 

A. Representational State Transfer (REST) is a style of architecture based on a set of principles that describe 

how networked resources are defined and addressed. 
 

3 MARKS 

 

List of IoT protocols used in Application Layer? 

The protocols used in application layer are 
HHTP, CoAP, WebSocket, MQTT, XMPP, DDS, AMQP 

 

What is the advantage of using WebSocket-based Communication API’s? 

WebSocket API’s allows bi-directional, full duplex communication between clients and servers. 

 

Define Stateless? 

Each request from client to server must contain all the information needed for understating the request and 
does not take any advantage of stored data. 

 

What is the action taken by the ‘PUT’ HHTP Method? 

PUT HTTP command updates a resource present in the database. 
 

What communication model is used in WebSocket-based Communication API? 

Exclusive Pair Communication model is used are establish communication between client and server. 
 

What are the main components used for making an IoT System? 

A. The main components used for making an IoT System are 
Device 

Communication 
Services 

Management 

Security 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       72                       Dr.Venkateswarulu, Assoc Prof 
 

 

 

 

5 Marks 

 

1. Explain Logical Devices of IOT? 

LOGICAL DESIGN of IoT 

Refers to an abstract represent of entities and processes without going into the low level specifies of 
implementation. 
1) IoT Functional Blocks 
2) IoT Communication Models 

3) IoT Comm. APIs 

 
IoT Functional Blocks: Provide the system the capabilities for identification, sensing, 
actuation 

Communication and management. 
 

 

 

 
Device: An IoT system comprises of devices that provide sensing, actuation, monitoring and control 

functions. 

Communication: handles the communication for IoT system. 

Services: for device monitoring, device control services, data publishing services and services for 

device discovery. 

Management: Provides various functions to govern the IoT system. 

Security: Secures IoT system and priority functions such as authentication, authorization, message 

and context integrity and data security. 

Application: IoT application provide an interface that the users can use to control and monitor various 
aspects of IoT system. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       73                       Dr.Venkateswarulu, Assoc Prof 
 

 

 

 

 

 

1) IoT Communication Models: 

 

1) Request-Response 
2) Publish-Subscibe 

3 ) Push-Pull 

4) Exclusive Pair 

 

1) Request-Response Model: 

 

In which the client sends request to the server and the server replies to requests. Is a stateless 

communication model and each request-response pair is independent of others. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       74                       Dr.Venkateswarulu, Assoc Prof 
 

 

 

 

 

 

 

 

2) Publish-Subscibe Model: 
 

 
Involves publishers, brokers and consumers. Publishers are source of data. Publishers send data 

to the topics which are managed by the broker. Publishers are not aware of the consumers. 

Consumers subscribe to the topics which are managed by the broker. When the broker receives 

data for a topic from the publisher, it sends the data to all the subscribed consumers. 

 
3) Push-Pull Model: in which data producers push data to queues and consumers pull data from the 

queues. Producers do not need to aware of the consumers. Queues help in decoupling the message 

between the producers and consumers. 



FUNDAMENTALS OF INTERNET OF THINGS(EC3211OE) 
 

Dept of CSE, NRCM                                       75                       Dr.Venkateswarulu, Assoc Prof 
 

 

4) Exclusive Pair: is bi-directional, fully duplex communication model that uses a persistent 

connection between the client and server. Once connection is set up it remains open until the 

client send a request to close the connection. Is a stateful communication model and server is 

aware of all the open connections. 

 


